
Government of Kerala

DEPARTMENT OF EDUCATION

COMPUTER APPLICATIONS

(Commerce)

State Council of Educational Research and Training (SCERT),

Kerala

2015

CLASS - XII

Higher Secondary Course

Review of C++
Programming

T
he basic concepts of C++ language were
discussed in Class XI. A good
understanding of these concepts is very

essential to attain the significant learning
outcomes envisaged in the following chapters.
This chapter is a quick tour to refresh the
concepts and skills you acquired in C++
language in Class XI. Each concept will be
presented with necessary details only. The most
important aspects like selection statements and
looping statements are explained with the help
of programs. Some advanced features like
nested loops and the effect of break and
continue statements in loops are also
introduced in this chapter.

Since we use GNU Compiler Collection (GCC)
with Geany IDE for developing C++ programs,
we should be aware of the structure of
program, format of specifying the header file,
size of the data types, etc.

1.1 Basics of C++

C++ being a programming language, we started
by learning its character set followed by tokens,
expressions and statements. We also discussed
data types and their modifiers. While
constructing expressions, we identified the need
of data type conversions. Table 1.1 provides a
brief idea of these elements.

1

Significant Learning Outcomes

After the completion of this chapter the

learner

• uses input statements in programs

to enter data into the computer.

• uses output statements in programs

to display various forms of output.

• applies various forms of if

statements to make decisions while

solving problems.

• compares else if ladder and switch

statement.

• distinguishes different looping

statements of C++.

• selects appropriate loop in

programs for solving problems.

• uses the concept of nested loop in

problem solving and predicts the

output.

• identifies the effect of break and

continue statements in loops by

explaining their effect on the

program flow.

10

Computer Applications (Commerce) - XII

Character set

Tokens

Keywords

Identifiers

Literals

Operators

Fundamental unit of C++ language. Classified into letters
(a - z, A - Z), digits (0 - 9), special characters (# , ; : > { +
etc.), white spaces (space bar, tab, new line) and some other
characters whose ASCII code fall in the range from 0 to
255.

Basic building blocks of C++ programs. Constituted by
one or more characters. Classified into keywords, identifiers,
literals, punctuators and operators.

Reserved words that convey specific meaning to the
language compiler.

User-defined words to identify memory locations,
statements, functions, data types, etc. Certain rules are to
be followed to ensure the validity of identifiers. Identifiers
include variables, labels, function names, etc.

Tokens that do not change their value during the program
run. They are also known as constants. Classified into integer
constants, floating point constants, character constants and
string constants. Integer constant is constituted by digits

only with an optional plus (+) or minus (-) sign as the first
character. Floating point constant is expressed in fractional
form and exponential form. Character constant is a single
character of C++ enclosed within single quotes. There are
some special character constants, called escape sequences.
They represent some non-printable or non-graphic

characters like new line ('\n'), tab space ('\t') and
punctuation marks like single quote ('\' '), double quotes
('\"'), question mark ('\?') etc. String constant is a sequence
of characters enclosed by a pair of double quotes.

Symbols that tell the compiler about some operations. Each
of them actually triggers a specific operation. Based on the
number of operands (data on which operation is carried
out), operators are classified into unary, binary and ternary.
Another classification is based on the type of operation

An overview of C++

11

1. Review of C++ Programming

An overview of C++

performed. They consist of arithmetic (+, -, *, /, %),
relational (<, <=, >, >=, ==, !=) and logical (&&, ||, !)
operators. These operators give some value as the result of

the operation. There are some special operators named get
from (>>) for input, put to (<<) for output and assignment
(=) for setting a value in a variable. Another category of
operators implicitly performs an assignment operation after
an arithmetic operation. They include increment (++),
decrement (--) and arithmetic assignment (+=, -=, *=, /=,

%=) operators.

Special characters like comma (,), semi colon (;), hash (#),
braces ({}) etc. used for the perfection of syntax of various

constructs of the language used in programs. They have
semantic and syntactic meaning to the compiler.

These are means to identify the type of data and associated

operations handling these data. Data types are classified
into fundamental and user-defined data types. Fundamental
data types represent atomic values and they include int,
char, float, double and void. Each data type excluding
void has its own size and range for the values they represent.
Data type void represents an empty set of data and hence

its size is zero.

The keyword signed, unsigned, short and long are
the type modifiers. They are used with data types to modify

the size of memory space and range of data supported by
the basic data types.

Expressions are constituted by operators and required

operands to perform an operation. Based on the operators
used, they are classified into arithmetic expressions,
relational expressions and logical expressions. Arithmetic
expression is divided into integer expression and real
expression. Integer expression consists only of integer data
as operands and it returns integer value. In real expressions,

the operands and the return-value are floating point data.

Punctuators

Data types

Type modifiers

Expressions

12

Computer Applications (Commerce) - XII

1.1.1 Various statements in a C++ program

Usually every program begins with pre-processor directives. We use #include
statement, the pre-processor directive to attach a header file to provide information
about predefined identifiers and functions used in the program. The pre-processor
directive statements are followed by using namespace statement. Usually we
use the predefined namespace std to specify the scope of identifiers cin and cout.
Then the main() function appears. It is an essential function in a C++ program,
where the program execution starts and ends. It consists of declaration statements
and a set of executable statements required for solving the problem. Let us have a
close look at these statements.

Declaration statement

Variables are identifiers of memory locations and are used in programs to refer to
data. They should be declared prior to their use in the program and data types are
required for this. The following statements are examples for variable declaration:

int n, sum;

float rad, area;

signed int a,b,c;

Values can be provided to the variables along with the declaration as shown below:

int n=10;

Type conversion

Relational expressions consist of numeric or character data
as operands and they return True or False as outputs.
Logical expressions use relational expressions as operands
in practice and return True or False value as results.

When different types of operands are involved in an
arithmetic expression, type conversion takes place. It is the
process of converting the current data type of a value into
another type. It may be implicitly and explicitly converted.
In implicit type conversion, complier is responsible for the
conversion. It always converts a lower type into higher one
and hence it is also known as type promotion. In explicit
conversion, user is responsible for the conversion. Here
the user determines the destination data type and hence it is
known as type casting.

An overview of C++

Table 1.1: Basic elements of C++ language

13

1. Review of C++ Programming

This kind of statement is known as variable initialisation statement. The value
assigned to the variable can be replaced by some other value later in the program.
But the following statement does not allow changing the value of the variable.

const int n=10;

Here the variable initialisation begins with the access modifier const, a keyword
that restricts a change in the value of the variable.

Input statement

C++ provides the operator >>, called extraction operator or get from operator. It
is a binary operator and hence it requires two operands. The first operand is the
pre-defined identifier cin that identifies keyboard as input object. The second
operand is strictly a variable. We can use more than one variable in the same
statement to receive more than one input. The following are valid examples:

cin>>rad;

cin>>a>>b>>c;

Output statement

To perform output operation, C++ gives the operator <<, called insertion operator
or put to operator. It is also a binary operator. The first operand is the pre-defined
identifier cout that identifies monitor as the output object. The second operand
may be a constant, a variable or an expression. The following are some examples
for output statements:

cout<< "hello";

cout<< area;

cout<< 25;

cout<< a+b+c;

cout<< "Sum of " << n << "numbers = " << sum;

Assignment statement

A specific data is stored in memory locations (variables) using assignment operator
(=). The statement that contains = is known as assignment statement. It is also a

binary operator and the operand to the left of = should be a variable. The operand
after = may be a numeric constant, a variable or an expression of numeric type. The
following assignment statements are valid:

n = 253;

area = 3.14*rad*rad;

a = b = c;

14

Computer Applications (Commerce) - XII

There are special assignment operators, called arithmetic assignment operators. They

are +=, -=, *=, /= and %=. These are all binary operators and the operand to left of

these operators should be variables. Their operations may be illustrated as follows:

n+=2; // It is equivalent to n=n+2;

a*=b; // It is equivalent to a=a*b;

sum-=n%10; // It is equivalent to sum=sum-n%10;

The operators ++ and -- are special operators of C++, which are, in a way, similar

to assignment statements. These are unary operators and the operand should be a

variable. The following statements illustrate the operations associated with them:

n++; // It is equivalent to n=n+1;

a--; // It is equivalent to a=a-1;

There are two versions for these operators: postfix form and prefix form. a++;

and a--; are the postfix form of increment and decrement operators respectively.

++a; and --a; are the prefix form. Whatever be the form, ++ operator adds 1 to

the content of the operand variable and the result is stored in it.

The two versions differ when used with an assignment or output statement. Assume

that a is an integer variable with value 5 and b is another integer variable. After the

execution of the statement: b=a++; the value of b will be 5 and that of a will be 6.

That is, b=a++; is equivalent to the statement sequence: b=a; a=a+1;. So this

method of incrementing is known as use and change method.

But the statement, b=++a; is equivalent to the statement sequence: a=a+1; b=a;.

So the values of both a and b will be 6. This method of incrementing is known as

change and use method.

Similarly, the statement cout<<a--; will display 5, but the value of a will be 4. It

is equivalent to the statement sequence cout<<a; a=a-1;. But the statement

cout<<--a; is equivalent to a=a-1; cout<<a;.

The input, output and assignment operators (>>, << and =) may appear more than

once in the respective statements. It is known as cascading. The following are

examples in each category for cascading of input, output and assignment operators

respectively.

cin >> a >> b >> c;

cout << "Sum of " << n << "numbers = " << sum;

a = b = c;

15

1. Review of C++ Programming

1.1.2 Structure of a C++ program

Program 1.1 shows the basic structure of a C++ program. It accepts the length
and breadth of a rectangle and computes its area and perimeter.

Program 1.1: To find the area and perimeter of a rectangle

#include <iostream>

using namespace std;

int main()

{

float length, breadth, peri, area;

cout << "Enter the length and breadth of rectangle: ";

cin >> length >> breadth;

peri = 2*(length + breadth);

area = length * breadth;

cout << "Perimeter = " << peri << endl;

cout << "Area = " << area << endl;

return 0;

}

Program 1.1 uses the header file iostream, since the identifiers cin and cout are
used. The second line is also essential to use cin and cout independently. The
using namespace statement uses std to make cin and cout available in main().
In GCC, the function name main()is preceded by the data type int. Variables are
declared using float data type. Cascading of input operator and output operators
are utilised. Formulae are used in the assignment statements to solve the problem.
The endl is used
instead of '\n'
to print a new line
after each of the
results. Figure
1.1(a) shows the
screenshot of
Program 1.1 in
Geany IDE and
Figure 1.1(b)
shows the output
on execution.

Fig. 1.1(a): Program 1.1.in Geany IDE

16

Computer Applications (Commerce) - XII

This program follows a sequential structure. That is, all statements in the program
are executed in a sequential fashion.

Fig. 1.1(b): Output of Program 1.1 in the terminal window of Geany IDE

While writing a C++ program, we use the statement "using namespace

std;". Why?

A program cannot have the same name for more than one identifier

(variables or functions) in the same scope. In our home two or more

persons (or even living beings) will not have the same name. If there are, it will surely

make conflicts in the identity within the home. So, within the scope of our home, a name

should be unique. But our neighbouring home may have a person (or any living being)

with the same name as that of one of us. It will not make any confusion of identity

within the respective scopes. But an outsider cannot access a particular person by

simply using the name; but the house name is also to be mentioned.

The concept of namespace is similar to a house name. Different identifiers are associated

to a particular namespace. It is actually a group name in which each item is unique in its

name. User is allowed to create own namespaces for variables and functions. The

keyword using technically tells the compiler about a namespace where it should search

for the elements used in the program. In C++, std is an abbreviation of 'standard' and

it is the standard namespace in which cout, cin and a lot of other things are defined.

So, when we want to use them in a program, we need to follow the format std::cout

and std::cin. This kind of explicit referencing can be avoided with the statement

using namespace std; in the program. In such a case, the compiler searches this

namespace for the elements cin, cout, endl, etc. So whenever the computer comes

across cin, cout, endl or anything of that matter in the program, it will read it as

std::cout, std::cin or std::endl.

The statement using namespace std; doesn't really add a function, it is the include

<iostream> that "loads" cin, cout, endl and all the like.

17

1. Review of C++ Programming

1.2 Control statements

The sequential flow of execution in a program may need to be altered while solving
problems. It may be in the form of selection, skipping or repeated execution of
one or more statements. Usually this decision will be based on some condition(s).
C++ provides statements to facilitate this requirement with the help of control
transfer statements. These are classified into two: (i) decision making/selection
statements and (ii) iteration statements. Let us see how these statements help problem
solving.

1.2.1 Selection statements

C++ provides two statements to select a task from the alternatives based on a
condition. They are if statement and switch statements. if statement has different
versions: simple if, if - else and else if ladder. The following program illustrates
the mode of execution of these statements. This program accepts the CE scores of
Computer Applications in three terms and finds the highest as the final CE score.

Program 1.2: To find the best CE score from the three given scores

#include <iostream>

using namespace std;

int main()

{

short int ce1, ce2, ce3, final_ce;

cout<<"Enter three CE scores: ";

cin>>ce1>>ce2>>ce3;

if (ce1>ce2)

final_ce=ce1;//Will be executed, if the condition is true

else

final_ce=ce2;//Will be executed, if the condition is false

Know your progress

1. What is meant by token in C++?

2. Read the following tokens and identify the type of token to which
each of these belongs:

i. number ii. 23.98 iii. "\0" iv. cin v. ++
vi. void vii. '\\' viii. ; ix. = x. a

3. What is the role of #include statement in C++ program?

4. What is wrong in the statement: cin>>25; ?

5. List the type modifiers of C++.

18

Computer Applications (Commerce) - XII

if (ce3>final_ce) final_ce=c3;//No else block for this if

cout<<"Final CE Score is "<<final_ce;

return 0;

}

Program 1.2 uses short int data type for the variables. In GCC, int takes 4
bytes of memory, whereas short takes only 2 bytes. In this problem we need only
the values within the range of short. The program also uses if-else statement
and a simple if statement. Initially, the test expression ce1>ce2 will be evaluated.
If it evaluates to true, the value of ce1 will be assigned to final_ce, otherwise
that of ce2 will be assigned. After that, the third score stored in ce3 is compared
with the content of final_ce. If the score in ce3 is higher, it will be stored in
final_ce, otherwise final_ce will not be changed.

We learned that else if ladder is a multi-branching statement. Program 1.3
illustrates the working of else if ladder. It accepts a character and prints whether
it is an alphabet, digit or any other character.

Program 1.3: To check whether the character is uppercase letter, lowercase

letter, digit or other characters

#include <iostream>

using namespace std;

int main()

{

char ch;

cout<<"Enter a character: ";

cin>>ch;

if (ch>='A' && ch<='Z')

cout<<"Uppercase letter";

else if (ch>='a' && ch<='z')

cout<<"Lowercase letter";

else if (ch>='0' && ch<='9')

cout<<"Digit";

else

cout<<"Other character";

return 0;

}

Program 1.3 uses else if ladder or else if staircase to select a statement
from four different alternatives. Three conditions are provided for selecting one
among the three actions. The fourth alternative will be selected when all the three
conditions are evaluated to false.

19

1. Review of C++ Programming

In some cases, where integer equality conditions are used for decision making,
switch statement can replace else if ladder. Since char type data are treated
as numeric, they are also used in equality checking. Program 1.4 illustrates this
concept. This program accepts any one of the four letters a, b, c and d. If 'a' is the
input, the word 'Abacus' will be displayed. Similarly, 'Binary' for 'b', 'Computer' for
'c' and 'Debugging' for 'd' will be displayed. For the given problem, actually the
default statement is not required. In that case, there will not be any response
from the program for an input other than the four specified characters. So, to make
the program user-friendly, default case is mentioned in this program.

Program 1.4: To display a word for a given character

#include <iostream>

using namespace std;

int main()

{

char ch;

cout<<"Enter a, b, c or d: ";

cin>>ch;

switch(ch)

{

case 'a': cout<<"Abacus";

break;

case 'b': cout<<"Binary";

break;

case 'c': cout<<"Computer";

break;

case 'd': cout<<"Debugging";

break;

default : cout<<"Invalid input!!";

}

return 0;

}

Program 1.4 also uses the concept of multi branching. Different cases are given,
out of which only one will be executed. Selection will be based on the match between
the value of the expression provided with switch and the constant attached with
any one case. If none of the constants is matched with the value of ch, the default
case will be executed.

20

Computer Applications (Commerce) - XII

Conditional operator (?:)

It is a ternary operator of C++ and it requires three operands. It can substitute if -
else statement. The if - else statement used in Program 1.2 can be replaced by
the following:

final_ce = (ce1>ce2) ? ce1 : ce2;

If we have to find the largest among three scores, nesting of conditional operator
can be used as follows:

final_ce = (ce1>ce2) ? ((ce1>ce3)?ce1:ce3) :

((ce2>ce3)?ce2:ce3);

1.2.2 Looping statements

C++ provides three looping statements: while, for and do-while. A looping
statement has four components: initialisation expression, test expression, update
expression and loop-body. The loop-body is the set of statements for repeated
execution. The execution is continued as long as the test expression (condition) is
true. The variable used in the test expression, called loop control variable, gets its
initial value through the initialisation expression (or statement). Update expression
changes the value of the loop control variable. Usually, it takes place after each
execution of the loop-body.

Looping statements, also called iteration statements, are classified into two: entry-
controlled and exit-controlled. In entry-controlled loops, test expression is evaluated
before the execution of the loop-body. Program control enters the loop-body only
if the condition is true. while and for are examples of entry-controlled loops.
But in exit-controlled loop, condition is checked only after executing the loop-
body. So it is certain that the loop-body will be executed at least once in the case of
exit-controlled loop. do-while statement belongs to this category.

All the three expressions (initialization, test and update) are placed together in for
loop. But in the case of while and do-while, initialisation expression has to be
given before the loop and update expression within the loop-body. Test expression
appear along with the word while. Let us see some programs to understand the
working of these loops.

Replace the switch statement used in Program 1.4 with else if ladder.

In Program 1.4, if break; statements are removed what will be the
output?

The else if ladder used in Program 1.3 cannot be replaced with switch.
Why?

Let us do

21

1. Review of C++ Programming

Program 1.5: To find the sum of digits of a number

#include <iostream>

using namespace std;

int main()

{

int num, sum=0, dig;

cout<<"Enter a number: ";

cin>>num;

while (num>0)

{

dig=num%10;

sum=sum+dig;

num=num/10;

}

cout<<"Sum of the digits of the input number = "<<sum;

return 0;

}

In Program 1.5, num is the loop control variable as it is involved in the test
expression. The initialisation of this variable is through an input statement. Note
that the updation expression is within the loop-body. If the input is not a positive
number, the body will never be executed.

Let us see another program that uses for statement to constitute a loop.

Program 1.6: To find the sum of the first N natural numbers

#include <iostream>

using namespace std;

int main()

{

int n, sum=0;

cout<<"Enter the limit: ";

cin>>n;

for(int i=1; i<=n; i++)

sum=sum+i;

cout<<"Sum of the first "<<n<<" natural numbers = "<<sum;

return 0;

}

22

Computer Applications (Commerce) - XII

In Program 1.6, the variable i is the loop control variable and is initialised with an
assignment statement. The updation is done with increment operation. The program
needs a loop based on counting. The for statement is more appropriate in such
situations.

As mentioned earlier, do-while loop ensures the execution of loop-body at least
once. Its application is illustrated in the following program.

Program 1.7: To find the average height of a group of students

#include <iostream>

using namespace std;

int main()

{

float hgt, sum=0, avg_hgt;

short n=0;

char ch;

do

{

cout<<"Enter the height: ";

cin>>hgt;

n++;

sum=sum+hgt;

cout<<"Any more student (Y/N)? ";

cin>>ch;

}while (ch=='Y' || ch=='y');

avg_hgt=sum/n;

cout<<"Average Height = "<<avg_hgt;

return 0;

}

The execution of the loop-body in Program 1.7 is repeated as long as user responds
by inputting 'Y' or 'y'.

Rewrite the looping segment of Program 1.5 using for and do-
while statements.

Rewrite the looping segment of Program 1.6 using while and do-
while statements.

Rewrite the looping segment of Program 1.7 using for and while
statements.

Let us do

23

1. Review of C++ Programming

1.3 Nested Loops

Placing a loop inside the body of another loop is called nesting of a loop. In a
nested loop, the inner loop statement will be executed repeatedly as long as the
condition of the outer loop is true. Here the loop control variables for the two
loops should be different.

Let us observe how a nested loop works. Take the case of a minute-hand and second-
hand of a clock. Have you noticed the working of a clock? While the minute-hand
stands still at a position, the second-hand moves to complete one full rotation (say
1 to 60). The minute hand moves to the next position (that is, the next minute) only
after the second hand completes one full rotation. Then the second-hand again
completes another full rotation corresponding to the minute-hand's current position.
For each position of the minute-hand, the second-hand completes one full rotation
and the process goes on. Here the second hand movement can be treated as the
execution of the inner loop and the minute-hand's movement can be treated as the
execution of the outer loop. Figure 1.2 shows the concept of nested loops with the
help of digital watch.

As in Figure 1.2, the
value of second changes
from 0 to 59 keeping
the minute fixed. Once
the value of seconds
reached 59, the next
change will be in
minutes. Once the
minute is changed, the second resets its value to 0.

All types of loops in C++ allow nesting. An example is given to show the working
procedure of a nested for loop.

Know your progress

1. What are the selection statements of C++?

2. What are the four components of a loop?

3. Give examples for entry-controlled loop.

4. Which control transfer statement is equivalent to the conditional
operator (?:)?

5. All switch statements can be replaced by any form of if
statement. State whether it is true or false.

Fig. 1.2: Concept of nested loop using digital watch

24

Computer Applications (Commerce) - XII

for(i=1; i<=2; ++i)

{

for(j=1; j<=3; ++j)

{

cout<< "\n" << i << " and " << j;

}

}

Initially value 1 is assigned to the outer loop variable i. Its test expression is evaluated
to be True and hence the body of the loop is executed. The body contains the inner
loop with the control variable j and it begins to execute by assigning the initial
value 1 to j. The inner loop is executed 3 times, for j=1, j=2, j=3. Each time it
evaluates the test expression j<=3 and displays the output since it is True.

1 and 1

1 and 2

1 and 3

When the test expression j<=3 is False, the program control comes out of the
inner loop. Now the update statement of the outer loop is executed which makes
i=2. Then the test expression i<=2 is evaluated to True and once again the loop
body (i.e. the inner loop) is executed. Inner loop is again executed 3 times, for j=1,
j=2, j=3 and displays the output.

2 and 1

2 and 2

2 and 3

After completing the execution of the inner loop, the control again goes back to
the update expression of the outer loop. Value of i is incremented by 1 (now i=3)
and the test expression i<=2 is now evaluated to be False. Hence the loop terminates
its execution. Table 1.2 illustrates the execution of the above given program segment:

Iterations Outer loop (i) Inner loop (j) Output

1 1 1 1 and 1

2 1 2 1 and 2

3 1 3 1 and 3

4 2 1 2 and 1

5 2 2 2 and 2

6 2 3 2 and 3

Table 1.2: Execution of a nested loop

Inner loop

Outer loop

The first 1 is of i and
the second 1 is of j

25

1. Review of C++ Programming

When working with nested loops, the control variable of the outer
loop changes its value only after the inner loop is terminated. Let
us write a program to display the given triangle using nested loop.

Program 1.8: To display a triangle of stars

#include<iostream>

using namespace std;

int main()

{

short int i, j;

for(i=1; i<=5; ++i) //outer loop

{

cout<< "\n" ;

for(j=1; j<=i; ++j) // inner loop

cout<< '*';

}

return 0;

}

In Program 1.8, what will the output be if we use the statement
cout<<i; instead of cout<<'*';?

Similarly, what will the output be if we use the statement cout<<j;?Let us do

1.4 Jump statements

The statements that facilitate the transfer of program control from one place to
another are called jump statements. C++ provides four jump statements that perform
unconditional control transfer in a program. They are return, goto, break and
continue statements. All of these are keywords. In addition, C++ provides a
standard library function exit()that helps us to terminate a program.

The return statement is used to transfer control back to the calling program or to
come out of a function. It will be explained in detail later in Chapter 3. Now, we will
discuss the other jump statements.

1.4.1 goto statement

The goto statement can transfer the program control to anywhere in the function.
The target destination of a goto statement is marked by a label, which is an identifier.
The syntax of goto statement is:

*

* *

* * *

* * * *

* * * * *

26

Computer Applications (Commerce) - XII

goto label;

............;

............;

 label:;

............;

where the label can appear in the program either before or after goto statement.
The label is followed by a colon (:) symbol. For example, consider the following
code fragment which prints numbers from 1 to 50.

int i=1;

start:

cout<<i;

++i;

if (i<=50)

goto start;

Here, the cout statement prints the value 1. After that i is incremented by 1 (now
i=2), then the test expression i<=50 is evaluated. Since it is True the control is
transferred to the statement marked with the label start. When the test expression
evaluates to False, the process terminates and transfers the program control
following the if statement. It is to be noted that the usage of goto is not encouraged
in structured programming.

1.4.2 break statement

We have already discussed the effect of break in switch statement. It transfers
the program control outside the switch block. When a break statement is
encountered in a loop (for, while, do-while), it takes the program control outside
the immediate enclosing loop. Execution continues from the statement immediately
after the control structure. Let us see how it affects the execution of loops. Consider
the following two program segments.

Code segment 1:

i=1;

while(i<=10)

{

cin>>num;

if (num==0)

break;

cout<<"Entered number is: "<<num;

cout<<"\nInside the loop";

++i;

}

cout<<"\nComes out of the loop";

27

1. Review of C++ Programming

The above code fragment allows to input 10 different numbers. During the input if
any number happens to be 0, the program control comes out of the loop by skipping
the rest of the statements within the loop-body and displays the message "Comes
out of the loop" on the screen. Let us consider another code segment that
uses break within a nested loop.

Code segment 2:

for(i=1; i<=5; ++i) //outer loop

{

cout<<"\n";

for(j=1; j<=i; ++j) //inner loop

{

cout<<"* ";

if (j==3) break;

}

}

This code segment will display the given pattern:

The nested loop executes normally for the value of i=1, i=2, i=3. For each value
of i, the variable j takes values from 1 to i. When the value of i becomes 4, the
inner loop executes for the value of j=1, j=2, j=3 and comes out from the inner
loop on executing the break statement.

1.4.3 continue statement

The statement continue is another jump statement used for skipping over a part
of the code within the loop-body and forcing the next iteration. The break statement
forces termination of the loop, but the continue statement forces next iteration
of the loop. The following program segment explains the working of a continue
statement:

for (i=1; i<=10; ++i)

{

if (i==6)

continue;

cout<<i<<"\t";

}

This code gives the following output:

1 2 3 4 5 7 8 9 10

Note that 6 is not in the list. When the value of i becomes 6 the continue statement
is executed. As a result, the output statement is skipped and program control goes
to the update expression for next iteration.

*

* *

* * *

* * *

* * *

28

Computer Applications (Commerce) - XII

A break statement inside a loop will abort the loop and transfer control to the
statement following the loop. A continue statement will just abandon the current
iteration and let the loop continue with next iteration. When a continue statement
is used within while and do-while loops, care should be taken to avoid infinite
execution.

Let us compare break and continue statements. Table 1.3 is
designed to show the comparison aspects. Some of the entries are
filled. The remaining entries are left for you to fill with proper
comparison points.Let us do

• ...

• Takes the control outside the loop
by skipping the remaining part of the
loop

• ...

...

Table 1.3: Comparison between break and continue

continue break

• Used only with loops

• ...

...

...

• Program control goes outside only
when the test expression of the loop
returns false

Let us write a program that requires the use of nested loops. Program 1.9 can
display all prime numbers below 100.

Program 1.9: To display all prime numbers below 100

#include<iostream>

using namespace std;

int main()

{ short int n, i, flag;

cout<<"Prime numbers below 100 are...\n";

for(n=2; n<=100; n++) //Outer loop

{ flag=1;

for(i=2; i<=n/2; i++) //Inner loop

if(n%i==0)

{ flag=0;

break;//Takes the control outside the iiner loop

}

if(flag==1) cout<<n<<'\t';

}

return 0;

}

29

1. Review of C++ Programming

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

In Program 1.8, the variable n is given the values from 2 to 100 through the outer
loop. Each value is checked for prime using the inner loop. If any of the values
from 2 to n/2 is found to be a factor of n, inner loop is terminated by changing
the value of flag from 1 to 0. The value of n, for which flag remains 1 after the
termination of the inner loop, is prime and is printed.

Let us conclude

We have refreshed ourselves with the basic concepts of C++ language. Character
set, tokens, data types, type modifiers, expressions and type conversions are
presented in capsule form. Different types of C++ statements are recollected with
the help of examples. Various control transfer statements are briefly explained with
programs. Nested loops and the two jump statements break and continue are
introduced as the new concepts. A clear-cut idea about these topics is very much
essential to learn the concepts covered in Chapters 2 and 3 of this book.

 Let us practice

1. Write a C++ program to display all palindrome numbers between 100 and 200.

2. Write a C++ program to display all Armstrong numbers below 1000.

3. Write a C++ program to display all perfect numbers below 1000.

4. Write a C++ program to display the multiplication table of a number.

5. Write a C++ program to prepare electricity bill for a group of consumers.
The previous meter reading and current reading are the inputs. The payable
amount is to be calculated using the following criteria:

Up to 300 units : Rs. 5.00/- per unit
Up to 350 units : Rs. 5.70/- per unit
Up to 400 units : Rs. 6.10/- per unit
Up to 500 units : Rs. 6.70/- per unit
Above 500 units : Rs. 7.50/- per unit
The program should provide facility to input the details of any number of
consumers as the user wants.

Let us assess

1. What is wrong with the following code segment?
for (short i=1; i<5; ++i)

for (i=5; i>0; --i)

cout<<i<<"\t";

2. Distinguish between break and continue statements.

30

Computer Applications (Commerce) - XII

3. The default case in switch is equivalent to the else block of else if
ladder. Justify this statement with the help of example.

4. What will be the output of the following code fragment?
for (outer=10; outer>5; --outer)

for (inner=1; inner<4; ++inner)

cout<<outer<<"\t"<<inner<<endl;

5. Write a program to produce the following output using nested loop:
A
A B
A B C
A B C D
A B C D E

6. Read the following C++ code snippet:
for (n=1; n<5; ++n)

{

cout<<i;

if (i==2) continue;

if (i%3==0) break;

cout<<"Hello";

}

Choose the correct output of this code from the following:

a. 1Hello2Hello3Hello4Hello b. 1Hello2Hello3

c. 1Hello23 d. 1Hello23Hello

7. Read the following C++ code segment and replace it with a looping statement:

cin>>n;

loop: r=n%10;

s=s*10+r;

n=n/10;

if (n!=0) goto loop;

cout<<s;

8. Which of the following is not a character constant in C++?

a. '\t' b. 'a' c. '9' d. '9a'

9. Some of the following identifiers are invalid. Identify them and give reason for
the invalidity.

a. unsigned b. cpp c. 2num d. cout

10. What happens if break is not used in switch statement?

W
e use variables to store data in
programs. But if the quantity of
data is large, more variables are to

be used. This will cause difficulty in accessing
the required data. We have revised the concept
of C++ data types in Chapter 1 and we used
basic data types to declare variables and
perform type conversion. In this chapter, a
derived data type in C++, named 'array' is
introduced. The word ‘array’ is not a data type
name, rather it is a kind of data type derived
from fundamental data types to handle large
number of data easily. We will discuss the
creation and initialisation of arrays, and
operations like traversal.

2.1 Array and its need
An array is a collection of elements of the
same type placed in contiguous memory
locations. Arrays are used to store a set of
values of the same type under a single variable
name. Each element in an array can be accessed
using its position in the list, called index number
or subscript.

Why do we need arrays? We will illustrate this
with the help of an example. Let us consider a
situation where we need to store the scores of
20 students in a class and has to find their class

2

Significant Learning Outcomes

Arrays

After the completion of this chapter, the

learner

• identifies the scenarios where an

array can be used.

• uses arrays to refer to a group of

data.

• familiarises with the memory

allocation for arrays.

• accesses any element in an array

while solving problems.

• solves problems in which large

amount of data is to be processed.

• represnts strings using character

arrays.

• carries out various word processing

operations using character arrays.

32

Computer Applications (Commerce) - XII

average. If we try to solve this problem by making use of variables, we will need 20
variables to store students’ scores. Remembering and managing these 20 variables
is not an easy task and the program may become complex and difficult to understand.

int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;

float avg;

cin>>a>>b>>c>>d>>e>>f>>g>>h>>i>>j>>k>>l>>m>>n>>o>>p>>q>>r>>s>>t;

avg = (a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t)/20.0;

As it is, this code is fine. However, if we want to modify it to deal with the scores of
a large number of students, say 1000, we have a very long and repetitive task at
hand. We have to find a way to reduce the complexity of this task.

The concept of array comes as a boon in such situations. As it is a collection of
elements, memory locations are to be allocated. We know that a declaration statement

is needed for memory allocation. Let us see how arrays are declared and used.

2.1.1 Declaring arrays

Just like the ordinary variable, the array is to be declared properly before it is used.
The syntax for declaring an array in C++ is as follows.

data_type array_name[size];

In the syntax, data_type is the type of data that the array variable can store,
array_name is an identifier for naming the array and the size is a positive integer
number that specifies the number of elements in the array. The following is an
example:

int num[10];

The above statement declares an array named num that can store 10 integer numbers.
Each item in an array is called an element of the array. The elements in the array
are stored sequentially as shown in Figure 2.1. The first element is stored in the first
location; the second element is stored in the second location and so on.

num[0] num[1] num[2] num[3] num[4] num[5] num[6] num[7] num[8] num[9]

Index→ 0 1 2 3 4 5 6 7 8 9

Fig. 2.1: Arrangement of elements in an array

Since the elements in the array are stored sequentially, any element can be accessed
by giving the array’s name and the element’s position. This position is called the
index or subscript value. In C++, the array index starts with zero. If an array is

33

2. Arrays

declared as int num[10]; then the possible index values are from 0 to 9. In this
array, the first element can be referenced as num[0] and the last element as num[9].
The subscripted variable, num[0], is read as “num of zero” or “num zero”. It’s a
shortened way of saying “the num array subscripted by zero”. So, the problem of
referring the scores of 1000 students can be resolved by the following statement:

int score[1000];

The array, named score, can store the scores of 1000 students. The score of the
first student is referenced by score[0] and that of the last by score[999].

2.1.2 Memory allocation for arrays

The amount of storage required to hold an array is directly related to its type and
size. Figure 2.2 shows the memory allocation for the first five elements of array
num, assuming 1000 as the address of the first element. Since num is an integer type
array, size of each element is 4 bytes (in a system with 32 bit integer representation
using GCC) and it will be represented in memory as shown in Figure 2.2.

The memory space allocated for an array can be computed using the following
formula:

total_bytes = sizeof(array_type) × size_of_array

For example, total bytes allocated for the array declared as float a[10]; will be
4 × 10 = 40 bytes.

2.1.3 Array initialisation

Array elements can be initialised in their declaration statements in the same manner
as in the case of variables, except that the values must be included in braces, as
shown in the following examples:

int score[5] = {98, 87, 92, 79, 85};

char code[6] = {‘s’, ‘a’, ‘m’, ‘p’, ‘l’, ‘e’};

float wgpa[7] = {9.60, 6.43, 8.50, 8.65, 5.89, 7.56, 8.22};

Initial values are stored in the order they are written, with the first value used to
initialize element 0, the second value used to initialize element 1, and so on. In the
first example, score[0] is initialized to 98, score[1] is initialized to 87, score[2]
is initialized to 92, score[3] is initialized to 79, and score[4] is initialized to 85.

Fig. 2.2: Memory allocation for an integer array

34

Computer Applications (Commerce) - XII

If the number of initial values is less than the size of the array, they will be stored in
the elements starting from the first position and the remaining positions will be
initialized with zero, in the case of numeric data types. For char type array, such
positions will be initialised with ' ' (space bar) character. When an array is initialized
with values, the size can be omitted. For example, the following declaration statement
will reserve memory for five elements:

int num[] = {16, 12, 10, 14, 11};

2. 1.4 Accessing elements of arrays

Array elements can be used anywhere in a program as we do in the case of normal
variables. We have seen that array is accessed element-wise. That is, only one element
can be accessed at a time. The element is specified by the array name with the subscript.
The following are some examples of using the elements of the array named score:

score[0] = 95;

score[1] = score[0] - 11;

cin >> score[2];

score[3] = 79;

cout << score[2];

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript in brackets can be a variable, a constant or an expression that evaluates
to an integer. In each case, the value of the expression must be within the valid
subscript range of the array. An important advantage of using variable and integer
expressions as subscripts is that, it allows sequencing through an array by using a
loop. This makes statements more structured keeping away from the inappropriate
usage as follows:

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript values in the above statement can be replaced by the control variable
of for loop to access each element in the array sequentially. The following code
segment illustrates this concept:

sum = 0;

for (i=0; i<5; i++)

sum = sum + score[i];

An array element can be assigned a value interactively by using an input statement,
as shown below:

for(int i=0; i<5; i++)

 cin>>score[i];

35

2. Arrays

When this loop is executed, the first value read is stored in the array element
score[0], the second in score[1] and the last in score[4].

Program 2.1 shows how to read 5 numbers and display them in the reverse order.
The program includes two for loops. The first one allows the user to input array
values. After five values have been entered, the second for loop is used to display

the stored values from the last to the first.

Program 2.1: To input the scores of 5 students and display them in

reverse order

#include <iostream>

using namespace std;

int main()

{

int i, score[5];

for(i=0; i<5; i++) // Reads the scores

{

cout<<"Enter a score: ";

cin>>score[i];

}

for(i=4; i>=0; i--) // Prints the scores

cout<<"score[" << i << "] is " << score[i]<<endl;

return 0;

}

The following is a sample output of program 2.1:

Enter a score: 55

Enter a score: 80

Enter a score: 78

Enter a score: 75

Enter a score: 92

score[4] is 92

score[3] is 75

score[2] is 78

score[1] is 80

score[0] is 55

Accessing each element of an array at least once to perform any operation is known
as traversal operation. Displaying all the elements of an array is an example of
traversal. If any operation is performed on all the elements in an array, it is a case of
traversal. Program 2.2 shows how traversal is performed in an array.

36

Computer Applications (Commerce) - XII

 Program 2.2: Traversal of an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i]; //Reading the elements

for(i=0; i<5; i++)

 a[i] = a[i] + 1; // A case of traversal

cout<<"\nNow value of elements in the array are...\n";

for(i=0; i<5; i++)

 cout<< a[i]<< "\t"; // Another case of traversal

return 0;

}

The following is a sample output of program 2.2:

Enter the elements of the array : 12 3 6 1 8

Now value of elements in the are...

13 4 7 2 9

1. Write array declarations for the following:
a. Scores of 100 students
b. English letters
c. A list of 10 years
d. A list of 30 real numbers

2. Write array initialization statements for the following:
a. An array of 10 scores: 89, 75, 82, 93, 78, 95, 81, 88, 77,

and 82
b. A list of five amounts: 10.62, 13.98, 18.45, 12.68, and 14.76
c. A list of 100 interest rates, with the first six rates being

6.29, 6.95, 7.25, 7.35, 7.40 and 7.42.
d. An array of 10 marks with value 0.
e. An array with the letters of VIBGYOR.
f. An array with number of days in each month.

3. Write a C++ code to input values into the array: int ar[50];
4. Write a C++ code fragment to display the elements in the even

positions of the array: float val[100];

Let us do

37

2. Arrays

Let us solve another problem that requires traversal operation. Program 2.3 accepts
five numbers from a user and finds the sum of these numbers.

Program 2.3: To find the sum of the elements of an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i, sum;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i]; //Reading the elements

sum = 0;

for(i=0; i<5; i++)

 sum = sum + a[i]; // A case of traversal

cout<<"\nSum of the elements of the array is "<< sum;

return 0;

}

The following is a sample output of Program 2.3:

Enter the elements of the array : 12 3 6 1 8

Sum of the elements of the array is 30

Program 2.4 illustrates another case of traversal to find the largest element in an
array. In this program a variable big is used to hold the largest value. Initially it is
assigned with the value in the first location. Then it is compared with the remaining
elements. Whenever a larger value is found, it repalces the value of big.

Program 2.4: To find the largest element in an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i, big;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i];

big = a[0];

for(i=1; i<5; i++)

 if (a[i] > big) // A case of traversal

big = a[i];

38

Computer Applications (Commerce) - XII

cout<<"\nThe biggest element is " << big;

return 0;

}

The following is a sample output of program 2.4:

Enter the elements of the array : 12 3 6 1 8

The biggest element is 12

2.2 String handling using arrays

We know that string is a kind of literal in C++ language. It appears in programs as

a sequence of characters within a pair of double quotes. Imagine that you are asked

to write a program to store your name and display it. We have learned that variables

are required to store data. Let us take the identifier my_name as the variable.

Remember that in C++, a variable is to be declared before it is used. A declaration

statement is required for this and it begins with a data type. Which data type should

be used to declare a variable to hold string data? There is no basic data type to

represent string data. We may think of char data type. But note that the variable

declared using char can hold only one character. Here we have to input string

which is a sequence of characters.

Let us consider a name “Niketh”. It is a string consisting of six characters. So it

cannot be stored in a variable of char type. But we know that an array of char

type can hold more than one character. So, we declare an array as follows:

char my_name[10];

It is sure that ten contiguous locations, each with one byte size, will be allocated for

the array named my_name. If we follow the usual array initialization method, we

can store the characters in the string “Niketh” as follows:

char my_name[10]={'N', 'i', 'k', 'e', 't', 'h'};

Figure 2.3 shows the memory allocation for the above declared character array.

Note that, we store the letters in the string separated by commas. If we want to

input the same data, the following C++ statement can be used:

for (int i=0; i<6; i++)

 cin >> my_name[i];

During the execution of this statement, we have to input six letters of “Niketh”

one after the other separated by Space bar, Tab or Enter key. The memory allocation

in both of these cases will be as shown in Figure 2.3.

39

2. Arrays

Fig. 2.3 : Memory allocation for the character array

my_name

N i k e t h

0 1 2 3 4 5 6 7 8 9

Subscripts

Elements

Array Name

So, let us conclude that a character array can be used to store a string, since it is a
sequence of characters. However, it is true that we do not get the feel of inputting
a string. Instead, we input the characters constituting the string one by one.

In C++, character arrays have some privileges over other arrays. Once we declare a
character array, the array name can be considered as an ordinary variable that can
hold string data. Let’s say that a character array name is equivalent to a string variable.
Thus your name can be stored in the variable my_name (the array name) using the
following statement:

cin >> my_name;

It is important to note that this kind of usage is wrong in the case of arrays of other
data types. Now let us complete the program. It will be like the one given in Program
2.5.

Program 2.5 To input a string and display

#include <iostream>

using namespace std;

int main()

{

char my_name[10];

cout << "Enter your name: ";

cin >> my_name;

cout << "Hello " << my_name;

return 0;

}

On executing this program we will get the output as shown below.

Enter your name: Niketh

Hello Niketh

Note that the string constant is not "Hello", but "Hello " (a white space is
given after the letter 'o').

40

Computer Applications (Commerce) - XII

Null character '\0' is stored

at the end of the string

Fig. 2.4 : Memory allocation for the character array

my_name

N i k e t h \0

0 1 2 3 4 5 6 7 8 9

Array Name

Run Program 2.5 and input your full name by expanding the initials
if any, and check whether the output is correct or not. If your name
contains more than 10 characters, increase the size of the array as
needed.Let us do

2.3 Memory allocation for strings

We have seen how memory is allocated for an array of characters. As Figure 2.3
shows, the memory required depends upon the number of characters stored. But if
we input a string in a character array, the scene will be different. If we run Program
2.5 and input the string Niketh, the memory allocation will be as shown in Figure
2.4.

Note that a null character '\0' is stored at the end of the string. This character is
used as the string terminator and added at the end automatically. Thus we can say
that memory required to store a string will be equal to the number of characters in
the string plus one byte for null character. In the above case, the memory used to
store the string Niketh is seven bytes, but the number of characters in the string is
only six.

As in the case of variable initialization, we can initialize a character array with a
string as follows:

char my_name[10] = "Niketh";

char str[] = "Hello World";

In the first statement 10 memory locations will be allocated and the string will be
stored with null character as the delimiter. The last three bytes will be left unused.
But, for the second statement, size of the array is not specified and hence only 12
bytes will be allocated (11 bytes for the string and 1 for '\0').

2.4 Input/Output operations on strings
Program 2.5 contains input and output statements for string data. Let us modify
the declaration statement by changing the size of the array to 20. If we run the
program by entering the name Maya Mohan, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya

41

2. Arrays

Note that though there is enough size for the array, we get only the word "Maya" as
the output. Why does this happen?

Let us have a close look at the input statement: cin>>my_name;. We have
experienced that only one data item can be input using this statement. A white
space is treated as a separator of data. Thus, the input Maya Mohan is treated as
two data items, Maya and Mohan separated by white space. Since there is only
one input operator (>>) followed by a variable, the first data (i.e., Maya) is stored.
The white space after "Maya" is treated as the delimiter.

So, the problem is that we are unable to input strings containing white spaces. C++
language gives a solution to this problem by a function, named gets(). The function
gets() is a console input function used to accept a string of characters including
white spaces from the standard input device (keyboard) and store it in a character
array.

The string variable (character array name) should be provided to this function as
shown below:

gets(character_array_name);

When we use this function, we have to include the library file cstdio.h in the
program. Let us modify Program 2.5, by including the statement
#include<cstdio>, and replacing the statement cin>>my_name; by
gets(my_name); After executing the modified program, the output will be as
follows:

Enter your name: Maya Mohan

Hello Maya Mohan

The output shows the entire string that we input. See the difference between gets()
and cin.

Though we do not use the concept of subscripted variable for the input and output
of strings, any element in the array can be accessed by specifying its subscript along
with the array name. We can access the first character of the string by my_name[0],
fifth character by my_name[4] and so on. We can even access the null character
('\0') by its subscript. Program 2.6 illustrates this idea.

Program 2.6: To input a string and count the vowels in a string

#include <iostream>

#include <cstdio> //To use gets() function

using namespace std;

int main()

{

char str[20];

42

Computer Applications (Commerce) - XII

int vow=0;

cout<<"Enter a string: ";

gets(str);

for(int i=0; str[i]!='\0'; i++)

switch(str[i])

{ case 'a':

case 'e':

case 'i':

case 'o':

case 'u': vow++;

}

cout<<"No. of vowels in the string "<<str<<" is "<<vow;

return 0;

}

If we run Program 2.6 by inputting the string “hello guys”, the following output
can be seen:

Enter a string: hello guys

No. of vowels in the string hello guys is 3

Now, let us analyse the program and see how it works to give this output.

l In the beginning, the gets() function is used and so we can input the string
"hello guys".

l The body of the for loop will be executed as long as the element in the array,
referenced by the subscript i, is not the null character ('\0'). That is, the
body of the loop will be executed till the null character is referenced.

l The body of the loop contains only a switch statement. Note that, no
statements are given against the first four cases of the switch. In the last
case, the variable vow is incremented by 1. You may think that this is required
for all the cases. Yes, you are right. But, you should use the break statement
for each case to exit the switch after a match. In this program the action for
all the cases are the same and that is why we use this style of code.

l While the for loop iterates, the characters will be retrieved one by one for
matching against the constants attached to the cases. Whenever a match is found,
the variable vow is incremented by 1.

l As per the input string, matches occur when the value of i becomes 1, 4 and 7.
Thus, the variable vow is incremented by 1 three times and we get the correct
output.

We have seen how gets() function facilitates input of strings. Just like the other

side of a coin, C++ gives a console function named puts() to output string data.

43

2. Arrays

The function puts() is a console output function used to display a string data on

the standard output device (monitor). Its syntax is:
puts(string_data);

The string constant or variable (character array name) to be displayed should be
provided to this function. Observe the following C++ code fragment:

char str[10] = "friends";

puts("hello");

puts(str);

The output of the above code will be as follows:

hello

friends

Note that the string "friends" in the character array str[10] is displayed in a
new line. Try this code using cout<<“hello”; and cout<<str; instead of the
puts() functions and see the difference. The output will be in the same line without

a space in between them in the case of cout statement.

Predict the output, if the input is “HELLO GUYS” in Program 2.6.
Execute the program with this input and check whether you get the
correct output. Find out the reason for difference in output. Modify
the program to get the correct output for any given string.

Let us do

 Let us practice

1. Write a C++ program to input the amount of sales for 12 months into an
array named SalesAmt. After all the input, find the total and average amount
of sales.

2. Write a C++ program to create an array of N numbers, find the average and
display those numbers greater than the average.

Let us conclude

We have discussed array as a data type to refer to a group of same type of data.
Memory allocation for arrays is explained with the help of schematic diagrams. The
use of looping statements, especially for loop in manipulating the elements of an
array are also illustrated through programs. We have also seen that how arrays help
to handle strings effectively in programs.

44

Computer Applications (Commerce) - XII

12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567

3. Write a C++ program to swap the first and the last elements of an integer
array.

4. Write a C++ program to input 10 integer numbers into an array and determine
the maximum and minimum values among them.

5. Write a C++ program to input a string and find the number of uppercase
letters, lowercase letters, digits, special characters and white spaces.

6. Write a C++ program to count the number of words in a sentence.

7. Write a C++ program to find the length of a string.

 Let us assess

1. The elements of an array with ten elements are numbered from ____ to ____.

2. An array element is accessed using _____.

3. If AR is an array, which element will be referenced using AR[7]?

4. Consider the array declaration int a[3]={2,3,4}; What is the value of a[1]?

5. Consider the array declaration int a[]={1,2,4}; What is the value of a[1]?

6. Printing all the elements of an array is an example for _____ operation.

7. Write down the output of the following code segment:
puts(“hello”);

puts(“friends”);

8. Write the initialisation statement to store the string "GCC".

9. Define an Array.

10. What does the declaration int studlist[1000]; mean?

11. How is memory allocated for a single dimensional array?

12. Write C++ statements to accept an array of 10 elements and display the count
of even and odd numbers in it.

13. Read the following statements:
char name[20];

cin>>name;

cout<<name;

What will be the output if you input the string “Sachin Tendulkar”? Justify
your answer.

14. Write C++ statements to accept two single dimensional arrays of equal length
and find the difference between corresponding elements.

15. Write a program to check whether a string is a palindrome or not.

	Page 1-8
	Page 9-30
	Page 31-44
	Page 45-80
	Page 81-130
	Page 131-172
	Page 173-216
	Page 217-228
	Page 229-254
	Page 255-300
	Page 301-316
	Page 317-347

